Защитная функция белков. Строение и функции белков

Белки являются основой всех живых организмов. Именно эти вещества выступают компонентом клеточных мембран, органелл, хрящей, сухожилий и роговых Однако защитная функция белков - одна из самых важных.

Белки: особенности строения

Наряду с липидами, углеводами и нуклеиновыми кислотами белки являются органическими веществами, составляющими основу живых существ. Все они - природные биополимеры. Эти вещества состоят из многократно повторяющихся структурных единиц. Они называются мономеры. Для белков такими структурными единицами являются аминокислоты. Соединяясь в цепочки, они образуют крупную макромолекулу.

Уровни пространственной организации белка

Цепочка, состоящая из двадцати аминокислот, может образовывать различные структуры. Это уровни пространственной организации или конформации представлена цепью из аминокислот. Когда она закручивается в спираль, возникает вторичная. Третичная структура возникает при закручивании предыдущей конформации в клубок или глобулу. А вот следующая структура самая сложная - четвертичная. Она состоит из нескольких глобул.

Свойства белков

Если четвертичная структура разрушается до первичной, а именно до цепи аминокислот, то происходит процесс, который называется денатурацией. Он обратим. Цепочка аминокислот способна снова образовать более сложные структуры. А вот когда происходит деструкция, т.е. разрушение первичной восстановить уже невозможно. Такой процесс является необратимым. Деструкцию осуществлял каждый из нас, когда термически обрабатывал продукты, состоящие из белка - куриные яйца, рыбу, мясо.

Функции белков: таблица

Белковые молекулы очень многобразны. Это обусловливает широкий спектр их возможностей, которые обусловлены Функции белков (таблица содержит необходимую информацию) являются необходимым условием существования живых организмов.

Функция белка Значение и суть процесса Название белков, осуществляющих функцию

Строительная

(структурная)

Белок является строительным материалом для всех структур организма: от мембран клетки до мышц и связок. Коллаген, фиброин
Энергетическая При расщеплении белков выделяется энергия, необходимая для осуществления процессов жизнедеятельности организма (1 г белка - 17, 2 кДж энергии). Проламин
Сигнальная Белковые соединения клеточных мембран способны распознавать специфические вещества из окружающей среды. Гликопротеиды
Сократительная Обеспечение двигательной активности. Актин, миозин
Резервная Запас питательных веществ. Эндосперм семян
Транспортная Обеспечение газообмена. Гемоглобин
Регуляторная Регуляция химических и физиологических процессов в организме. Белки гормонов
Каталитическая Ускорение протекания химических реакций. Ферменты (энзимы)

Защитная функция белков в организме

Как видите, функции белков очень разнообразны и важны по своему значению. Но мы не упомянули еще об одной из них. Защитная функция белков в организме заключается в предотвращении проникновения чужеродных веществ, которые могут нанести существенный вред организму. Если же это произошло, специализированные белки способны их обезвредить. Эти защитники называются антителами или иммуноглобулинами.

Процесс формирования иммунитета

С каждым вздохом в наш организм проникают болезнетворные бактерии и вирусы. Они попадают в кровь, где начинают активно размножаться. Однако на их пути встает значительная преграда. Это белки плазмы крови - иммуноглобулины или антитела. Они являются специализированными и характеризуются способностью распознавать и обезвреживать чужеродные для организма вещества и структуры. Они называются антигенами. Так проявляется защитная функция белков. Примеры ее можно продолжить информацией об интерфероне. Этот белок также является специализированным и распознает вирусы. Это вещество даже является основой многих иммуностимулирующих лекарственных препаратов.

Благодаря наличию защитных белков организм способен противостоять болезнетворным частицам, т.е. у него формируется иммунитет. Он может быть врожденным и приобретенным. Первым все организмы наделены еще с момента появления на свет, благодаря чему и возможна жизнь. А приобретенный появляется после перенесения различных инфекционных заболеваний.

Механическая защита

Белки выполняют защитную функцию, непосредственно предохраняя клетки и весь организм от механических воздействий. К примеру, ракообразных играет роль панциря, надежно защищая все содержимое. Кости, мышцы и хрящи образуют основу организма, и не только предотвращают повреждение мягких тканей и органов, но и обеспечивают его передвижение в пространстве.

Образование тромбов

Процесс свертывания крови - это также защитная функция белков. Он возможен благодаря наличию специализированных клеток - тромбоцитов. При повреждении кровеносных сосудов они разрушаются. В результате плазмы фибриноген превращается в его нерастворимую форму - фибрин. Это сложный ферментативный процесс, в результате которого нити фибрина очень часто переплетаются и образуют густую сеть, которая препятствует вытеканию крови. Другими словами, образуется сгусток крови или тромб. Это является защитной реакцией организма. При нормальной жизнедеятельности этот процесс длится максимум до десяти минут. Но при - гемофилии, которой страдают в основном мужчины, человек может погибнуть даже при незначительном ранении.

Однако если тромбы образуются внутри кровеносного сосуда, это может быть очень опасно. В некоторых случаях это даже приводит к нарушению его целостности и внутреннему кровоизлиянию. В этом случае рекомендованы препараты, наоборот, разжижающие кровь.

Химическая защита

Защитная функция белков проявляется и в химической борьбе с болезнетворными веществами. И начинается она уже в ротовой полости. Попадая в нее, пища вызывает рефлекторное выделение слюны. Основу этого вещества составляет вода, ферменты, которые расщепляют полисахариды и лизоцим. Именно последнее вещество обезвреживает вредоносные молекулы, защищая организм от их дальнейшего воздействия. Содержится он и в слизистых оболочках желудочно-кишечного тракта, и в слезной жидкости, которая омывает роговицу глаза. В большом количестве лизоцим находится в грудном молоке, слизи носоглотки и белке куриных яиц.

Итак, защитная функция белков проявляется в первую очередь в обезвреживании бактериальных и вирусных частиц в крови организма. В результате у него формируется способность противостоять болезнетворным агентам. Ее и называют иммунитетом. Белки, которые входят в состав наружного и внутреннего скелета, защищают внутреннее содержимое от механических повреждений. А белковые вещества, находящиеся в слюне и других средах, предотвращают действие на организм химических агентов. Другими словами, защитная функция белков заключается в обеспечении необходимых условий для всех процессов жизнедеятельности.

    Структура белковых молекул. Связь свойств, функций и активности белков с их структурной организацией (специфичность, видовая принадлежность, эффект узнавания, динамичность, эффект кооперативного взаимодействия).

Белки - это высокомолекулярные азотсодержащие вещества, состоящие из остатков аминокислот, связанных между собой пептидными связями. Белки иначе называют протеинами;

Простые белки построены из аминокислот и при гидролизе распадаются соответственно только на аминокислоты. Сложные белки - это двухкомпонентные белки, которые состоят из какого-либо простого белка и небелкового компонента, называемого простетической группой. При гидролизе сложных белков, помимо свободных аминокислот, освобождаются небелковая часть или продукты ее распада. Простые белки в свою очередь делятся на основании некоторых условно выбранных критериев на ряд подгрупп: протамины, гистоны, альбумины, глобулины, проламины, глютелины и др.

Классификация сложных белков основана на химической природе входящего в их состав небелкового компонента. В соответствии с этим различают: фосфопротеины (содержат фосфорную кислоту), хромопротеины (в состав их входят пигменты), нуклеопротеины (содержат нуклеиновые кислоты), гликопротеины (содержат углеводы), липопротеины (содержат липиды) и металлопротеины (содержат металлы).

3. Структура белка.

Последовательность расположения аминокислотных остатков в полипептидной цепи белковой молекулы получила название первичной структуры белка . Первичная структура белка, помимо большого числа пептидных связей, обычно содержит также небольшое число дисульфидных (-S-S-) связей. Пространственная конфигурация полипептидной цепи, точнее тип полипептидной спирали, определяет вторичную структуру белка , она представлена в основном α-спиралью, которая фиксирована водородными связями. третичная структура -полипептидная цепь, свернутая целиком или частично в спираль, расположена или упакована в пространстве (в глобуле). Известная стабильность третичной структуры белка обеспечивается за счет водородных связей, межмолекулярных ван-дер-ваальсовых сил, электростатического взаимодействия заряженных групп и т д.

Четвертичная структура белка - структура, состоящая из оп­ределенного числа полипептидных цепей, занимающих строго фик­сированное положение относительно друг друга.

Классический пример белка, имеющего четвертичную структуру, являеться гемоглобин.

Физические свойства белков: высокая вязкость растворов,

незначительная диффузия, способность к набуханию в больших пределах, оптическая активность, подвижность в электрическом поле, низкое осмотическое давление и высокое онкотическое давление, способность к поглощению Уф-лучей при 280 нм, как и аминокислоты, амфотерны благодаря наличию свободных NH2-и СООН-групп и характеризуются соответственно всеми св-вами кислот и оснований. Обладают явно выраженными гидрофильными свойствами. Их растворы обладают очень низким осмотическим давлением, высокой вязкостью и незначительной способностью к диффузии. Белки способны к набуханию в очень больших пределах. С коллоидным состоянием белков связано явление светорассеяния, лежащее в основе количественного определения белков методом нефелометрии.

Белки способны адсорбировать на своей поверхности низкомолекулярные органические соединения и неорганические ионы. Это свойство предопределяет транспортные функции отдельных белков.

Химические свойства белков разнообразны, поскольку боковые радикалы аминокислотных остатков содер­жат различные функциональные группы (-NH2, -СООН, -ОН, -SН и др.). Характерной для белков реакцией является гидролиз пептидных связей. Благодаря наличию и амино-, и карбоксильных групп белки обладают амфотерными свойст­вами.

Денатурация белка - разрушение связей, стабилизирующих четвертичную, третичную и вторичную структуры, приводящее к дезориентации конфигурации белковой молекулы и сопровождаемое потерей нативных св-в.

Различают физические (температура, давление, механическое воздействие, ультразвуковое и ионизирующее излучения) и химические (тяжелые металлы, кислоты, щелочи, органические растворители, алкалоиды) факторы, вызывающие денатурацию.

Обратным процессом является ренатурация , то есть восстановление физико-химических и биологических свойств белка. Ренатурация невозможна если затронута первичная структура.

Большинство белков денатурируют при нагревании их раствором выше 50-60 о С. Внешние проявления денатурации сводятся к потере растворимости, особенно в изоэлектрической точке, повышению вязкости белковых растворов, увеличению коли­чества свободных функциональных SH-rpyпп и изменению характера рассеивания рентгеновских лучей, развертываются глобулы нативных белковых молекул и образуются случайные и беспорядочные структуры.

Сократительная функция. актин и миозин – специфические белки мышечной ткани. Структурная функция. фибриллярные белки, в частности коллаген в соединительной ткани, кератин в волосах, ногтях, коже,эластин в сосудистой стенке и др.

Гормональная функция. Ряд гормонов представлен белками или полипептидами, например гормоны гипофиза, поджелудочной железы и др. Некоторые гормоны являются производными аминокислот.

Питательная (резервная) функция. резервные белки, являющиеся источниками питания для плода, Основной белок молока (казеин) также выполняет главным образом питательную функцию.

    Биологические функции белков. Многообразие белков по структурной организации и биологической функции. Полиморфизм. Различия белкового состава органов и тканей. Изменения состава в онтогенезе и при заболеваниях.

-По степени сложности строения белки делят на простые и слож­ные. Простые или однокомпонентные белки состоят только из белковой части и при гидролизе дают аминокислоты. К сложным или двухкомпонентным относят белки, в состав которых входит протеин и добавочная группа небелковой природы, называемая простетической. ( могут высту­пать липиды, углеводы, нуклеиновые кислоты); соответственно сложные белки называют липопротеинами, гликопротеинами, нук-леопротеинами.

- По форме белковой молекулы белки разделяют на две группы: фибриллярные (волокнистые) и глобулярные (корпускулярные). Фибриллярные белки характеризуются высоким отношением их длины к диаметру (несколько десятков единиц). Их молекулы ни­тевидны и обычно собраны в пучки, которые образуют волокна. (являются главными компонентами наруж­ного слоя кожи, образуя защитные покровы тела человека). Они также участвуют в образовании соединительной ткани, включая хрящи и сухожилия.

Подавляющее количество природных белков относится к глобу­лярным. Для глобулярных белков характерно небольшое отношение длины к диаметру молекулы (несколько единиц). Имея более слож­ную конформацию, глобулярные белки выполняют и более раз­нообразные.

-По отношению к условно выбранным растворителям выделяют альбумины и глобулины . Альбумины очень хорошо растворяются в воде и в концентрированных солевых растворах.Глобулины не растворяются в воде и в растворах солей умерен­ной концентрации..

--Функциональная классификация белков наиболее удовлетвори­тельная, поскольку в ее основу положен не случайный признак а выполняемая функция. Кроме того, можно выделить сходство структур, свойств и функциональной активности входящих в ка­кой-либо класс конкретных белков.

Каталитически активные белки называют ферментами. Они осуществляют катализ практически всех химических превраще­ний в клетке. Подробно эта группа белков будет рассмотрена в главе 4.

Гормоны регулируют обмен веществ внутри клеток и интег­рируют обмен в различных клетках организма в целом.

Рецепторы избирательно связывают различные регуляторы (гормоны, медиаторы) на поверхности клеточных мембран.

Транспортные белки осуществляют связывание и транспорт веществ между тканями и через мембраны клетки.

Структурные белки . Прежде всего к этой группе относят белки, участвующие в построении различных биологических мембран.

Белки - ингибиторы ферментов составляют многочислен­ную группу эндогенных ингибиторов. Они осуществляют регуля­цию активности ферментов.

Сократительные белки обеспечивают механический процесс сокращения с использованием химической энергии.

Токсичные белки - некоторые белки и пептиды, выделяемые организмами (змеями, пчелами, микроорганизмами), являющиеся ядовитыми для других живых организмов.

Защитные белки. антите­ла - вещества белковой природы, вырабатываемые животным организмом в ответ на введение антигена. Антитела, взаимодейст­вуя с антигенами, дезактивируют их и тем самым защищают ор­ганизм от воздействия чужеродных соединений, вирусов, бакте­рий и т. д.

Белковый состав зависит от физиологич. Активности, состава пищи и режима питания, биоритмов. В процессе развития состав меняется значительно (от зиготы до формирования дифференцированных органов со специализированными ф-ми). Например, эритроциты содержат гемоглобин, обеспечивающий транспорт кислорода кровью, мыш-е кл-ки содержат сократительные белки актин и миозин, в сетчатке-белок родопсин и т д. При болезнях белковый состав меняется-протеинопатии. Наследственные протеинопатии развиваются в результате повреждений в генетическом аппарат. Какой-либо белок не синтезируется вовсе или синтезируется, но его первичная структура изменена (серповидно-клеточная анемия). Любая болезнь сопровождается изменением белкового состава т.е. развивается приобретённая протеинопатия. При этом первичная структура белков не нарушается, а происходит количественное изменение белков, особенно в тех органах и тканях, в которых развивается патологический процесс. Например, при панкреатитах снижается выработка ферментов, необходимых для переваривания пищевых веществ в ЖКТ.

    Факторы повреждения структуры и функции белков, роль повреждений в патогенезе заболеваний. Протеинопатии

Белковый состав организма здорового взрослого человека относительно постоянен, хотя возможны изменения количества отдельных белков в органах и тканях. При различных заболеваниях происходит изменение белкового состава тканей. Эти изменения называются протеинопатиями. Различают наследственные и приобретённые протеинопатии. Наследственные протеинопатии развиваются в результате повреждений в генетическом аппарате данного индивидуума. Какой-либо белок не синтезируется вовсе или синтезируется, но его первичная структура изменена. Любая болезнь сопровождается изменением белкового состава организма, т.е. развивается приобретённая протеинопатия. При этом первичная структура белков не нарушается, а обычно происходит количественное изменение белков, особенно в тех органах и тканях, в которых развивается патологический процесс. Например, при панкреатитах снижается выработка ферментов, необходимых для переваривания пищевых веществ в ЖКТ.

В некоторых случаях приобретённые протеинопатии развиваются в результате изменения условий, в которых функционируют белки. Так, при изменении рН среды в щелочную сторону (алкалозы различной природы) изменяется кон-формация гемоглобина, увеличивается его сродство к О 2 и снижается доставка О 2 тканям (гипоксия тканей).

Иногда в результате болезни повышается уровень метаболитов в клетках и сыворотке крови, что приводит к модификации некоторых белков и нарушению их функции

Кроме того, из клеток повреждённого органа в кровь могут выходить белки, которые в норме определяются там лишь в следовых количествах. При различных заболеваниях часто используют биохимические исследования белкового состава крови для уточнения клинического диагноза.

4. Первичная структура белков. Зависимость свойств и функций белков от их первичной структуры. Изменения первичной структуры, протеинопатии.

Урок разработан преподавателем биологии и химии Грабиной Н.В. Четко указаны цели, методы и тип урока, перечислено оборудование. Строго выдержана структура урока. Проверка усвоенных знаний осуществляется разными формами опроса. При изучении нового материала преподаватель использует интересные приемы, мотивирует и вовлекает студентов в работу. Итог такой работы - таблица "Функции белков". В данном уроке использованы инновационные технологии: проблемные, интеллектуальные, групповые, информационно-коммуникационные. План-конспект этого урока может быть использован учителями средней школы и преподавателями СПО.

Скачать:


Предварительный просмотр:

ТЕМА УРОКА: Белки. Состав, структура, строение и функции белков.

ЦЕЛИ УРОКА: 1.Образовательная: актуализировать знания учащихся о белках из школьного курса биологии; расширить знания о строении и функциях белков;

2. Развивающая: развивать умения систематизировать свои знания, пользоваться дополнительной литературой; уметь пользоваться приёмами сравнения, обобщения, делать выводы.

3. Воспитательная: соблюдать правила работы в коллективе.

ОБОРУДОВАНИЕ: компьютер, презентация «Уровни организации белков»; таблицы «Скелет и мышцы человека»; «Инфузория-туфелька»; опорные схемы «Аминокислоты»; «Состав белков»; модель белка гемоглобина; опорные конспекты «Функции белков»; динамическая модель структуры белков; рисунки «Тутовый шелкопряд»; «Эритроциты»; коллекция шерсти и кожи; пробирки, Н 2 О 2 ; кусочки вареного и сырого мяса и картофеля; пакеты с зернами пшеницы, кукуруза; яйца, молоко; семена бобовых.

Тип урока : комбинированный.

Методы и приемы обучения : проблемный, cловесно-наглядный, информационно-коммуникационный, решение задач, выступления.

Форма проведения : урок-семинар.

ХОД УРОКА.

I. Организационный момент.

II. Актуализация опорных знаний.

1. Индивидуальный опрос (у доски) по теме «Неорганические вещества клетки»:

Химический состав клетки;

Вода, ее значение для организма;

Минеральные соли, значение катионов и анионов;

2. Работа по карточкам (макроэлементы, микроэлементы, ультрамикроэлементы клетки).

3. а) Фронтальный опрос:

Что изучает цитология?

Назовите основные этапы развития цитологии.

Кто первым обнаружил ячейки – клетки на срезе пробки бузины?

Кто открыл одноклеточные организмы?

Назовите фамилии ученых, первыми доказавших, что все растения и животные состоят из клеток.

Что такое клетка в свете современной клеточной теории?

Б) Занимательные задачи:

Установлено, что растения в среднем используют менее 1% поглощаемой воды. Куда расходуется остальная?

Ответ: большая часть воды расходуется на транспирацию – испарение воды с поверхности растения.

Чем пауки дышат в воде?

Ответ: Паук – серебрянка «строит» воздушный колокол, повторяя несколько раз сложные операции по доставке пузырьков воздуха.

III. Мотивация учебной деятельности. Изучение нового материала.

1. Вступительное слово учителя:

На уроках биологии в школе большинство из вас вы изучали тему «Белки».

Что вы помните о белках из школьного курса биологии? (Опорные конспекты)

Белки – это высокомолекулярные органические соединения, которые входят в состав живых организмов. «Повсюду, где мы встречаем жизнь, мы находим, что она связаны с каким-либо белковым телом, и повсюду, где мы встречаем какое-либо белковое тело, которое не находится в процессе разложения, м ы без исключения встречаем и явления жизни».

« Жизнь - есть способ существования белковых тел».

Начало химическому исследованию белков было положено итальянцем Беккари (1728 г.), когда из пшеницы он выделил клейковину - новый класс веществ. Огромный вклад в изучение строения молекул белка внес немецкий ученый, лауреат Нобелевской премии Эмиль Фишер (1852-1919 гг.). 10 лет он занимался синтезом аминокислот и пришел к выводу, что они связаны между собой пептидной связью СО-NН (1907 г.) Теория Фишера – основная в химии белков. Белки – полимеры, мономерами которых являются аминокислоты. Существуют 20 аминокислот (таблицы на столах). Различают заменимые и незаменимые, или «волшебные» аминокислоты. Молекулярная масса белков колеблется от 6500 (инсулин) до 32000000 (белок вируса гриппа). Если молекула белка состоит из 20 разных аминокислот, то для неё существуют 2432902008178640000 изомеров!!! Несмотря на разнообразие в строении, состав молекул белка ограничен количеством элементов: С – 50-55%;О – 21-24%; N – 15-18%;Н – 6-7%S – 0,3-2,5 % Некоторые белки содержат P (молоко), Fe (кровь), Mg (хлорофилл), Zn, Cu, Se. В организме животных белков больше, чем в организме растений.

2. Объяснение учителя с элементами беседы и комментариями учащихся.

А) Классификация белков:

I. По химическому составу :

/ \

Протеины Протеиды

(при гидролизе образуются (при гидролизе образуются аминокислоты и

Только аминокислоты) другие компоненты небелковой природы-

Углеводы, нуклеиновые кислоты, Н3РО4)

Гликопротеиды;

Нуклеопротеиды;

Липопротеиды

II. По форме молекулы :

/ \

Фибриллярные Глобулярные

(длинные, нитевидные; (плотная компактная структура сферической

структурная и защитная функции) формы; ферментативная, транспортная функции;

Антитела.)

Б) Структура белков.

Динамическое моделирование уровней организации белковой молекулы. (студент)

Первичная(последовательность аминокислот в полипептидной цепи – пептидная связь);

Вторичная(пространственная конфигурация в виде спирали, или гармошки – водородная связь);

Третичная(пространственная конфигурация в виде глобулы, или шара – дисульфидная, ковалентная, ионная, водородная связь);

Четвертичная (совокупность нескольких третичных структур).Пример – молекула гемоглобина(демонстрация модели).

3. Объяснение учителя.

Свойства белков:

1)Химические свойства белков определяют разнообразные функциональные группы, которые входят в состав их молекул:

СООН (кислотные свойства) и NН 2 (основные свойства)

В целом, аминокислоты проявляют амфотерные свойства.

2) Денатурация – нарушение структуры белка, изменение физических, химичес-

Ких и биологических свойств (при изменении t°, облучении, резком изменении рН среды)

Денатурация

/ \

Обратимая Необратимая

(если не разрушена первичная структура) (разрушена все структуры)

Ренатурация – процесс восстановления естественной структуры белка.

4. Выступление студентов с сообщениями и демонстрацией плакатов, рисунков и натуральных объектов(функции белков):

Cтроительная функция (демонстрация: скелет животного, рога оленя, рисунок паука и паутины, тутового шелкопряда);

Регуляторная (демонстрация: плакат «Пищеварительная система человека», поджелудочная железа – рисунок);

Транспортная (модель белка гемоглобина, рисунок эритроцитов);

Каталитическая (демонстрация опыта с Н 2 О 2 и натуральными продуктами);

Защитная (плакат «Кровеносная система человека», рисунок лейкоцитов, тромбоцитов);

Сократительная (плакат « Мышцы человека», « Простейшие: инфузория – туфелька»);

Энергетическая (сравнительная таблица « Энергетическая ценность органических веществ»);

Запасающая (демонстрация: упаковка молока, зерна пшеницы, ржи, кукурузы, куриное яйцо).

По мере выступления студентов заполняется таблица в тетрадях.

ФУНКЦИИ БЕЛКОВ

Название функции

Примеры белков

Характеристика функции

1. Строительная (структурная)

Кератин

Волосяной покров, кости, ногти

Участие в образовании всех клеточных мембран и органоидов клетки.

Коллаген

Фиброин

Оссеин

Соединительная ткань, железы насекомых, кости

Образование нитей натурального шелка.

2. Регуляторная

Инсулин

Поджелудочная железа

Регулирует поступление и уровень глюкозы в крови.

Функция гормонов, влияющих на активность ферментов.

Гистоны

Гормон роста

В крови

3. Транспортная

Гемоглобин

Эритроциты крови

Переносит О 2, питательные вещества и СО 2.

Альбумины

Кровь

Транспорт жирных кислот.

4. Каталитическая

Б-ферменты

Каталаза

Рибонуклеаза

Трипсин

Во всех клетках и тканях животных и растений

Ускоряют химические реакции, способствуют расщеплению питательных веществ и вредных соединений.

5. Защитная

Антитела крови

Фибриноген

Тромбин

Интерферон

Кровеносная система (лейкоциты)

Иммунная защита организмов. Свертывание крови. Подавляет развитие вирусов.

6. Сократительная

Актин

Миозин

Фибрилл

Мышечные волокна. Структура ресничек и жгутиков простейших

Сокращение мышц. Движение простейших. Все виды движений.

7. Энергетическая

Все белки

Клетки всех организмов

Источник энергии для клеток (1г белка – 17,6 кДж энергии)

8. Запасная (питательная)

Казеин

Молоко

Запас питательных веществ.

Альбумин

Яйца

Клейковина

Пшеница

Зеин

Кукуруза

IV. ЗАКРЕПЛЕНИЕ ИЗУЧЕННОГО

1. Выводы учителя

Выполняемые функции определяют биологическое значение белков.

Основное качество пищевого белка – способность снабжать организм аминокислотами.

Организация правильного питания! (Не только количество, но и качество).

Наиболее ценные белки животного происхождения – молоко, сыр (2,2 %) и молочные продукты: яйца, рыба (18 %), мясо (20 %).

Источники белков растительного происхождения – зерновые (мука, крупы, макароны) и бобовые (фасоль, горох).

Овощи бедны белком, но они способствуют лучшей усвояемости белков.

2. Выступление студентов:

Получение искусственной белковой пищи и кормов;

Химические способы (из углеводородов – нефти);

Микробиологические способы.

3. Фронтальная итоговая беседа с учащимися.

Что изучали? (Игра «Цепочка»)

Каждый высказывает 3 основных понятия, которые больше всего запомнились.

V. ДОМАШНЕЕ ЗАДАНИЕ.

Выучить конспект, закончить работу над таблицей.

Вспомнить из школьного курса биологии строение и функции углеводов и липидов .


Благодаря сложности, разнообразию форм и состава, белки играют важную роль в жизнедеятельности клетки и организма в целом. Функции их разнообразны.

Функция Примеры и пояснения
1. Строительная Белки участвуют в образовании клеточных и внеклеточных структур: входят в состав клеточных мембран (липопротеины, гликопротеины), волос (кератин), сухожилий (коллаген) и т.д.
2. Транспортная Белок крови гемоглобин присоединяет кислород и транспортирует его от легких ко всем тканям и органам, а от них в легкие переносит углекислый газ; в состав клеточных мембран входят особые белки, которые обеспечивают активный и строго избирательный перенос некоторых веществ и ионов из клетки во внешнюю среду и обратно.
3. Регуляторная Гормоны белковой природы принимают участие в регуляции процессов обмена веществ. Например, гормон инсулин регулирует уровень глюкозы в крови, способствует синтезу гликогена, увеличивает образование жиров из углеводов.
4. Защитная В ответ на проникновение в организм чужеродных белков или микроорганизмов (антигенов) образуются особые белки - антитела, способные связывать и обезвреживать их. Фибрин, образующийся из фибриногена, способствует остановке кровотечений
5. Двигательная Сократительные белки актин и миозин обеспечивают сокращение мышц у многоклеточных животных
6. Сигнальная В поверхностную мембрану клетки встроены молекулы белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды, таким образом осуществляя прием сигналов из внешней среды и передачу команд в клетку.
7. Запасающая В организме животных белки как правило не запасаются, исключение: альбумин яиц, казеин молока. Но благодаря белкам в организме могут откладываться про запас некоторые вещества, например, при распаде гемоглобина железо не выводится из организма, а сохраняется в организме, образуя комплекс с белком ферритином.
8. Энергетическая При распаде 1 г белка до конечных продуктов выделяется 17,6 кДж. Сначала белки распадаются до аминокислот, а затем до конечных продуктов - воды, углекислого газа и аммиака. Однако в качестве источника энергии белки используются только тогда, когда другие источники (углеводы и жиры) израсходованы.
9. Каталитическая Одна из важнейших функций белков. Обеспечивается белками - ферментами, которые ускоряют биохимические реакции, происходящие в клетках. Например, рибулезобисфосфаткарбоксилаза катализирует фиксацию СО 2 при фотосинтезе.

Ферменты илиэнзимы особый класс белков, являющихся биологическими катализаторами. Благодаря ферментам биохимические реакции протекают с огромной скоростью. Скорость ферментативных реакций в десятки тысяч раз (а иногда и в миллионы) выше скорости реакций, идущих с участием неорганических катализаторов. Вещество, на которое оказывает свое действие фермент, называют субстратом .

Ферменты – глобулярные белки, по особенностям строения ферменты можно разделить на две группы: простые и сложные. Простые ферменты являются простыми белками, т.е. состоят только из аминокислот. Сложные ферменты являются сложными белками, т.е. в их состав помимо белковой части входит группа небелковой природы - кофактор . У некоторых ферментов в качестве кофакторов выступают витамины. В молекуле фермента выделяют особую часть, называемую активным центром. Активный центр – небольшой участок фермента (от трех до двенадцати аминокислотных остатков), именно в котором происходит связывание субстрата или субстратов с образованием фермент-субстратного комплекса. По завершении реакции фермент-субстратный комплекс распадается на фермент и продукт (продукты) реакции. Некоторые ферменты имеют (кроме активного) аллостерические центры участки, к которым присоединяются регуляторы скорости работы фермента (аллостерические ферменты ).

Для реакций ферментативного катализа

характерны: 1) высокая эффективность, 2) строгая избирательность и направленность действия, 3) субстратная специфичность, 4) тонкая и точная регуляция.

Субстратную и реакционную специфичность реакций ферментативного катализа объясняют гипотезы Э.Фишера (1890) и Д.Кошланда (1959). Э.Фишер (гипотеза «ключ-замок») предположил, что пространственные конфигурации активного центра фермента и субстрата должны точно соответствовать друг другу. Субстрат сравнивается с "ключом", фермент – с «замком».

Д.Кошланд (гипотеза «рука-перчатка») предположил, что пространственное соответствие структуры субстрата и активного центра фермента создается лишь в момент их взаимодействия друг с другом. Эту гипотезу еще называют гипотезой индуцированного соответствия.

Большинство неорганических катализаторов ускоряют химические реакции при очень высоких температурах, имеют максимальную эффективность в сильнокислой или сильнощелочной среде, при высоких давлениях, а большинство ферментов активны при температурах 35-45˚С, физиологических значениях кислотности раствора и при нормальном атмосферном давлении; скорость ферментативных реакций в десятки тысяч (а иногда и в миллионы раз) выше скорости реакций, идущих с участием неорганических катализаторов. Например, пероксид водорода без катализаторов разлагается медленно: 2Н 2 О 2 → 2Н 2 О + О 2 . В присутствии солей железа (катализатора) эта реакция идет несколько быстрее. Фермент каталаза (М=252000) за 1 сек. расщепляет 100 тыс. молекул Н 2 О 2 (М=34). Известно более 2000 различных ферментов, представленных белками с высокой молекулярной массой.

Скорость ферментативных реакций зависит от 1) температуры, 2) концентрации фермента, 3) коцентрации субстрата, 4) рН. Следует подчеркнуть, что поскольку ферменты являются белками, то их активность наиболее высока при физиологически нормальных условиях.

Рис. . Зависимость скорости реакции от концентрации фермента, субстрата, рН, температуры
Большинство ферментов может работать только при температуре от 0 о до 40 о С. В этих пределах скорость реакции повышается примерно в 2 раза при повышении температуры на каждые 10°С. При температуре выше 40°С белок подвергается денатурации и активность фермента падает. При температуре, близкой к точке замерзания, ферменты инактивируются.

При увеличении количества молекул субстрата скорость ферментативной реакции растет до тех пор, пока не произойдет насыщение активных центров фермента – если активный центр каталазы расщепляет в секунду 100 000 молекул субстрата, то при количестве молекул субстрата более 100 000 на активный центр скорость реакции не возрастет.

Увеличение концентрации фермента приводит к усилению каталитической активности, так как в единицу времени преобразованиям подвергается большее количество молекул субстрата.

Для каждого фермента существует оптимальное значение рН, при котором он проявляет максимальную активность (пепсин – 2,0, амилаза слюны – 6,8, липаза поджелудочной железы – 9,0). При более высоких или низких значениях рН активность фермента снижается. При резких сдвигах рН фермент денатурирует.

Скорость работы аллостерических ферментов регулируется веществами, присоединяющимися к аллостерическим центрам. Если эти вещества ускоряют реакцию, они называются активаторами , если тормозят – ингибиторами .

Классификация ферментов . По типу катализируемых химических превращений ферменты разделены на 6 классов: 1) оксиредуктазы (перенос атомов водорода, кислорода или электронов от одного вещества к другому – дегидрогеназа), 2) трансферазы (перенос метильной, ацильной, фосфатной или аминогруппы от одного вещества к другому – трансаминаза), 3) гидролазы (реакции гидролиза, при которых из субстрата образуются два продукта – амилаза, липаза), 4) лиазы (негидролитическое присоединение к субстрату или отщепление от него группы атомов, при этом могут разрываться связи «С-С», «С-N», «С-О», «С-S» – декарбоксилаза), 5) изомеразы (внутримолекулярная перестройка – изомераза), 6) лигазы (соединение двух молекул в результате образования связей «С-С», «С-N», «С-О», «С-S» – синтетаза

1. Как называется процесс нарушения природной структуры белка, при котором сохраняется его первичная структура? Действие каких факторов может приводить к нарушению структуры белковых молекул?

Процесс нарушения природной структуры белков под влиянием каких-либо факторов без разрушения первичной структуры называется денатурацией. Денатурация белков может быть вызвана действием различных факторов, например, высокой температуры, концентрированных кислот и щелочей, тяжёлых металлов.

2. Чем фибриллярные белки отличаются от глобулярных? Приведите примеры фибриллярных и глобулярных белков.

Молекулы фибриллярных белков имеют вытянутую, нитевидную форму. Глобулярные белки характеризуются компактной округлой формой молекул. К фибриллярным белкам относятся, например, кератин, коллаген, миозин. Глобулярными белками являются глобулины и альбумины крови, фибриноген, гемоглобин и др.

3. Назовите основные биологические функции белков, приведите соответствующие примеры.

● Структурная функция. Белки входят в состав всех клеток и межклеточного вещества, являются компонентами различных структур живых организмов. Например, у животных белок коллаген входит в состав хрящей и сухожилий, эластин – в состав связок и стенок кровеносных сосудов, кератин является важнейшим структурным компонентом перьев, волос, ногтей, когтей, рогов, копыт.

● Ферментативная (каталитическая) функция. Белки-ферменты являются биологическими катализаторами, ускоряя протекание химических реакций в живых организмах. Например, пищеварительные ферменты амилаза и мальтаза расщепляют сложные углеводы до простых, пепсин – белки до пептидов, под действием липаз происходит расщепление жиров до глицерина и карбоновых кислот.

● Транспортная функция. Многие белки способны присоединять и переносить различные вещества. Например, гемоглобин связывает и переносит кислород и углекислый газ. Альбумины крови транспортируют высшие карбоновые кислоты, а глобулины – ионы металлов и гормоны. Многие белки, входящие в состав цитоплазматической мембраны, участвуют в транспорте веществ в клетку и из неё.

● Сократительная (двигательная) функция. Сократительные белки обеспечивают способность клеток, тканей, органов и целых организмов изменять форму, двигаться. Например, актин и миозин обеспечивают работу мышц и немышечные внутриклеточные сокращения, тубулин входит в состав микротрубочек веретена деления, ресничек и жгутиков эукариотических клеток.

● Регуляторная функция. Некоторые белки и пептиды участвуют в регуляции различных физиологических процессов. Например, гормоны белково-пептидной природы инсулин и глюкагон регулируют содержание глюкозы в крови, а соматотропин (гормон роста) – процессы роста и физического развития.

● Сигнальная функция заключается в том, что некоторые белки, входящие в состав цитоплазматической мембраны клеток, в ответ на действие внешних факторов изменяют свою пространственную конфигурацию, тем самым обеспечивая приём сигналов из внешней среды и передачу информации в клетку. Например, белок опсин, входящий в состав пигмента родопсина, воспринимает свет и обеспечивает возникновение зрительного возбуждения рецепторов (палочек) сетчатки глаза.

● Защитная функция. Белки предохраняют организм от вторжения чужеродных объектов и от повреждений. Например, иммуноглобулины (антитела) участвуют в иммунном ответе, интерферон защищает организм от вирусной инфекции. Фибриноген, тромбопластин и тромбин обеспечивают свёртывание крови, предотвращая кровопотерю.

● Токсическая функция. Многие живые организмы выделяют белки-токсины, которые являются ядами для других организмов.

● Энергетическая функция. После расщепления до аминокислот белки могут служить источником энергии в клетке. При полном окислении 1 г белка выделяется 17,6 кДж энергии.

● Запасающая функция. Например, в семенах растений запасаются особые белки, которые используются при прорастании зародышем, а затем и проростком в качестве источника азота.

4. Что такое ферменты? Почему без их участия протекание большинства биохимических процессов в клетке было бы невозможным?

Ферменты – белки, которые выполняют функцию биологических катализаторов, т. е. ускоряют протекание химических реакций в живых организмах. Они катализируют реакции синтеза и расщепления различных веществ. Без участия ферментов эти процессы протекали бы слишком медленно или не протекали бы вовсе. Практически все процессы жизнедеятельности организмов обусловлены ферментативными реакциями.

5. В чем заключается специфичность ферментов? Какова её причина? Почему ферменты активно функционируют лишь в определённом диапазоне температуры, рН и других факторов?

Специфичность ферментов заключается в том, что каждый фермент ускоряет только одну реакцию либо действует только на определённый тип связи. Эта особенность объясняется соответствием пространственной конфигурации активного центра фермента тому или иному субстрату (субстратам).

Ферменты являются белками. Изменение рН, температуры и других факторов может вызвать денатурацию ферментов, в результате чего они теряют способность связываться со своими субстратами.

6. Почему белки, как правило, используются в качестве источников энергии лишь в крайних случаях, когда в клетках исчерпаны запасы углеводов и жиров?

Белки – основа жизни. Они выполняют чрезвычайно важные биологические функции, многие из которых (ферментативную, транспортную, двигательную и др.) не способны выполнять ни углеводы, ни жиры. Белки, использованные в качестве энергетического субстрата, дают столько же энергии, сколько и углеводы (1 г – 17,6 кДж) и в 2,2 раза меньше, чем жиры (1 г – около 39 кДж). Кроме того, при полном расщеплении белков (в отличие от углеводов и жиров) образуются не только СО 2 и Н 2 О, но также соединения азота и серы, причём некоторые из них токсичны для организма (например, NH 3). Поэтому энергетическую функцию у живых организмов выполняют прежде всего углеводы и жиры.

7*. У многих бактерий в процессах синтеза веществ, необходимых для нормального роста и размножения, участвует парааминобензойная кислота (ПАБК). В то же время в медицине для лечения ряда бактериальных инфекций используются сульфаниламиды - вещества, по структуре сходные с ПАБК. Как вы думаете, на чём основано лечебное действие сульфаниламидов?

С помощью фермента (дигидроптероатсинтетазы) бактерии осуществляют превращение ПАБК в продукт (дигидроптероевую кислоту), который далее используется для синтеза необходимых ростовых факторов. Из-за структурного сходства с ПАБК, сульфаниламиды также способны связываться с активным центром этого фермента, блокируя его работу (т.е. наблюдается конкурентное ингибирование). Это ведёт к нарушению синтеза ростовых факторов и нуклеиновых кислот у бактерий.

* Задания, отмеченные звёздочкой, предполагают выдвижение учащимися различных гипотез. Поэтому при выставлении отметки учителю следует ориентироваться не только на ответ, приведённый здесь, а принимать во внимание каждую гипотезу, оценивая биологическое мышление учащихся, логику их рассуждений, оригинальность идей и т. д. После этого целесообразно ознакомить учащихся с приведённым ответом.