Устройства для нагрева воды. Бойлеры горячей воды — делаем осознанный выбор Утилизация тепла сточных вод. Читатели спрашивают

Изобретение относится к стиральным машинам, которые осуществляют нагрев воды. Заявленное изобретение направлено на решение задачи снижения энергопотребления во время стирки, повышения безопасности окружающих людей и продления срока службы канализации. Поставленная задача возникает при разработке и создании экономичных и безопасных стиральных машин. Стиральная машина состоит из баков 1 i , i=1,3, электромагнитных клапанов 2 i , i=1,6, насосов 3 i , i=1,2. 1 ил.

Рисунки к патенту РФ 2544141


Изобретение относится к стиральным машинам, которые осуществляют нагрев воды.

Известны различные стиральные машины, осуществляющие стирку за счет вращения барабана и взаимодействия белья с моющим средством [С.Л. Корякин-Черняк. «Стиральные машины от А до Я» - М.: «Солон-Пресс»,. 2005 г. - 296 с.], [А.И. Лебедев. Анатомия стиральных машин. - М.: «Солон-Пресс»,. 2008 г. - 120 с.], состоящие из бака, электромагнитных клапанов, насоса, устройства управления и нагревателя. Стирка состоит из первой стирки (предварительной) и второй (основной).

Недостатком таких устройств являются:

Спуск использованной в процессе стирки нагретой воды в канализацию с высокой температурой, что приводит к преждевременному выходу из строя труб канализации и особенно уплотнителей;

Возможность возникновения ожогов людей, находящихся в ванной в момент стока нагретой воды, если сливной шланг закреплен на ванной.

Известно также устройство для предварительного подогрева воды, подогреваемой для душа с использованием свежей и хозяйственной воды, имеющее теплообменник, который соединен с опорной поверхностью душевого поддона. Теплообменник содержит замкнутый канал для прохождения жидкости, сообщенной с водой для душа. Через теплообменник проходит сток для хозяйственной воды. Для размещения теплообменника над основанием душевого поддона канал теплообменника приспособлен для размещения на верхней стороне основания душевого поддона. Сток, проходящий через теплообменник, также выполнен в виде канала, расположенного над основанием душевого поддона (DE, патент 3319638, кл. E03C 1/044, 1983).

Кроме этого, известно также душевое устройство с теплообменником и прямоточным подогревателем, которое содержит теплообменник между водой, вытекающей из душевого поддона, и свежей водой, поступающей в электрический прямоточный подогреватель и дополнительно подогреваемой в нем. Устройство имеет температурный датчик, который устанавливает фактическую температуру свежей воды, предварительно подогретой в теплообменнике. Необходимая электрическая мощность прямоточного подогревателя устанавливается в соответствии с разностью температур между фактической температурой и заданной температурой душевой воды, определяемой задатчиком, а также в соответствии с расходом свежей воды (DE, патент 3919543, E03C 1/044, 1990).

Наиболее близким по техническому исполнению к предложенному устройству является устройство, использующее теплообменник, который обменивается теплом с двигателем и обеспечивает необходимую воду для любого из циклов программы стирки. Вода должна быть взята на более раннем цикле и нагрета с помощью тепла, сгенерированного двигателем. Теплообменник соединен с баком одним концом для передачи нагретой воды в бак в соответствующем цикле. Тепло, сгенерированное двигателем, который приводит в движение барабан, используется для того, чтобы нагреть воду внутри теплообменника [Патент № 2401346, Россия, 2007. Стиральная машина /ОЗЮРТ Бекир (TR), КАНДЕМИР Нихат (TR), ДОРА Мурат (TR)] Недостатком данного устройства является небольшое количество тепловой энергии, выделяемой на современном электродвигателе, и соответственно невозможность нагрева необходимого количества воды (имеющей достаточно большую теплоемкость) до нужной температуры.

Заявленное изобретение направлено на решение задачи снижения энергопотребления во время стирки, повышения безопасности окружающих людей и продления срока службы канализации.

Поставленная задача возникает при разработке и создании экономичных и безопасных стиральных машин.

Сущность изобретения состоит в том, что в устройство, содержащее первый бак, первый насос, введены второй и третий бак, шесть электромагнитных клапанов, второй насос, второй и третий баки расположены ниже первого бака, между вторым и третьим баком имеется теплопроводящая среда, труба водоснабжения через первый электромагнитный клапан соединена с первым баком, а через четвертый электромагнитный клапан соединена со вторым баком, первый бак через второй электромагнитный клапан соединен с первым насосом, а через третий электромагнитный клапан соединен с третьим баком, второй бак через пятый электромагнитный клапан соединен со вторым насосом, а второй насос соединен с первым баком, третий бак через шестой электромагнитный клапан соединен с первым насосом.

Функциональная схема устройства представлена на чертеже. Стиральная машина состоит из баков 1 i , i=1,3, электромагнитных клапанов 2 i , i=1,6, насосов 3 i , i=1,2.

Второй и третий баки 1 2 и 1 3 расположены ниже первого бака 1 1 для осуществления возможности спуска воды из первого бака 1 i в третий бак 1 3 . В первом баке 1 1 имеется нагревательный элемент для нагрева воды. Между вторым баком 1 2 и третьим баком 1 3 имеется теплопроводящая среда.

Труба водоснабжения через первый электромагнитный клапан 2 1 соединена с первым баком 1 1 , а через четвертый электромагнитный клапан 2 4 соединена со вторым баком 1 2 .

Первый бак 1 1 через второй электромагнитный клапан 2 2 соединен с первым насосом 3 1 , а через третий электромагнитный клапан 2 3 соединен с третьим баком 1 3 .

Второй бак 1 2 через пятый электромагнитный клапан 2 5 соединен со вторым насосом 3 2 , а второй насос 3 2 соединен с первым баком 1 1 .

Третий бак 1 3 через шестой электромагнитный клапан 2 6 соединен с первым насосом 3 1 .

Устройство работает следующим образом в соответствии с этапами стирки белья.

1. Водопроводная вода через первый электромагнитный клапан 2 1 поступает в первый бак 1 1 для первой стирки.

2. Водопроводная вода через четвертый электромагнитный клапан 2 4 поступает во второй бак 1 2 для предварительного нагрева.

3. В процессе стирки вода в первом баке 1 1 подогревается до необходимой температуры, осуществляется стирка и по ее окончании спуск воды из первого бака 1 1 через третий электромагнитный клапан 2 3 в третий бак 1 3 . Между вторым баком 1 2 и третьим баком 1 3 осуществляется тепловой обмен, приводящий к увеличению температуры во втором баке 1 2 и к уменьшению температуры в третьем баке 1 3 .

4. Водопроводная вода через первый электромагнитный клапан 2 1 поступает в первый бак 1 1 для полоскания.

5. По окончании цикла полоскания осуществляется спуск воды из первого бака 1 1 в канализацию через второй электромагнитный клапан 2 2 и первый насос 3 1 .

6. За время полоскания и отжима вода во втором баке 1 2 нагрелась (предварительный нагрев), а в третьем баке 1 3 остыла. Нагретая во втором баке 1 2 вода через пятый электромагнитный клапан 2 5 закачивается вторым насосом 3 2 в первый бак 1 1 и, если необходимо, дополнительно подогревается. Затем осуществляется вторая стирка.

7. Сливается вода из третьего бака 1 3 через шестой электромагнитный клапан 2 6 и первый насос 3 1 в канализацию. Температура сливаемой воды из третьего бака 1 3 уже меньше, чем была при поступлении из первого бака 1 1 сразу после окончания первой стирки.

8. По окончании стирки осуществляется слив воды из первого бака 1 1 , полоскание и отжим.

Таким образом, во втором баке 1 2 осуществляется предварительный подогрев воды для второй стирки и одновременное охлаждение воды в третьем баке 1 3 , использованной в первой стирке, что приводит к уменьшению энергопотребления в процессе стирки, продлению срока эксплуатации канализации и повышению безопасности при использовании стиральной машиной.

Простота предварительно подогрева воды на основе теплообмена двух баков делает предварительный подогрев воды перспективным при использовании в стиральных машинах.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Стиральная машина с предварительным нагревом, содержащая первый бак, первый насос, отличающаяся тем, что в него введены второй и третий бак, шесть электромагнитных клапанов, второй насос, второй и третий баки расположены ниже первого бака, между вторым и третьим баком имеется теплопроводящая среда, труба водоснабжения через первый электромагнитный клапан соединена с первым баком, а через четвертый электромагнитный клапан соединена со вторым баком, первый бак через второй электромагнитный клапан соединен с первым насосом, а через третий электромагнитный клапан соединен с третьим баком, второй бак через пятый электромагнитный клапан соединен со вторым насосом, а второй насос соединен с первым баком, третий бак через шестой электромагнитный клапан соединен с первым насосом.

Бассейн на загородном участке или в доме - атрибут роскошной комфортной жизни, к которой стремятся многие. И если для «моржей» и просто людей, которые любят закаляться, температура в бассейне особого значения не имеет, то для всех остальных требуется обеспечить комфортную температуру. Для взрослых рекомендуется температура воды +23 °С, а для детей +25 - +28 °С. В жаркую летнюю погоду вода в бассейне сама прогреется до такой температуры, а вот в остальные более прохладные месяцы необходимо обеспечить подогрев воды бассейна с помощью специальных устройств. Всего существует несколько способов нагрева воды, о которых мы и расскажем ниже.

Сохраняем тепло - специальная пленка для бассейнов

Вода - сама по себе неплохой аккумулятор тепла. Поэтому в первую очередь необходимо позаботиться о том, чтобы тепло, накопленное водой в течение дня, не растратилось попусту. Для этого уличный бассейн должен быть заглублен хотя бы на ¾ своей высоты в землю. Сверху воды расстилается теплосберегающее покрытие.

В качестве теплосберегающего покрытия используется пленка с пузырьками светлого оттенка или черная - для накопления солнечной радиации. Пленку раскраивают под необходимый размер и укладывают на поверхность воды без дополнительного крепления. Такое покрытие уменьшает испарение воды с поверхности и сокращает теплообмен с воздухом.

Самый дешевый способ нагреть воду - использовать энергию солнца. Особенно это актуально в регионах, где преобладают ясные солнечные дни.

Для эффективной работы солнечного коллектора он должен располагаться так, чтобы в течение дня на него поступали солнечные лучи 4 - 5 часов. Это позволит поддерживать температуру воды в бассейне на уровне +25 - +30 °С или повышать температуру воды на 6 - 10 °С.

Солнечная гелио система подогрева воды в бассейне состоит из нескольких элементов: солнечного коллектора, насоса для перекачки воды, фильтра и клапана управления.

Фильтр необходим для того, чтобы в коллектор гелиосистемы не попадал мусор. Насос необходим для поднятия воды до гелиосистемы и продвижения ее по ней. Иногда требуется установить более мощный насос на фильтрационную систему. Клапан управления необходим для управления работой коллектора. Как это работает?

На поверхности солнечного коллектора находятся датчики, которые контролируют уровень освещения и поступления тепла. Когда датчики определяют, что на коллектор поступает достаточно много тепла, они дают команду клапану управления направить поток воды из бассейна в коллектор. При этом систему фильтрации необходимо настроить так, чтоб она интенсивно работала именно в период наиболее активного освещения. Тогда отфильтрованная вода будет поступать в солнечный коллектор, где она нагревается и возвращается в бассейн с другой стороны.

Когда заданная температура воды в бассейне достигнута, вода перенаправляется и движется мимо коллектора, сразу попадая в бассейн после фильтрации.

Внутри коллектора гелиосистемы циркулирует теплоноситель, от которого и нагревается вода из бассейна. Когда в темное время суток коллектор остывает, поток воды через него прекращается. Клапан управления перекрывает его подачу в гелиосистему.

При установке солнечных коллекторов существуют определенные правила:

  • Обычно солнечные коллекторы располагают на крыше дома, но можно их устанавливать и на земле, на опоре, обеспечивающей определенный угол наклона.
  • Желательно располагать панели коллектора строго на юг. Допускается их смещение не более чем на 45 ° по отношению к югу.
  • Уклон размещения солнечных панелей зависит от региона установки, поэтому данную информацию следует почерпнуть в инструкции или у консультанта компании производителя.
  • Можно устанавливать коллекторы на крышах, развернутых на запад и восток. В таком случае используются специальные коллекторы с увеличенной площадью.

Существует несколько видов солнечных коллекторов, вы можете их увидеть на схеме ниже.

Коллекторы с вакуумными стеклянными трубками несколько дороже, селективных панелей. А в магазинах по продаже оборудования для бассейнов обычно предлагают прямоугольные селективные панели.

Например, подогрев воды в каркасном бассейне осуществляется с помощью панелей «Санхитер», «Azuro» и других. Они устанавливаются рядом с бассейном на специальной опоре, обеспечивающей правильный уклон.

Расчет системы солнечного подогрева лучше доверить профессионалам, так как он учитывает множество параметров: интенсивность солнечного облучения, посещаемость бассейна, его размер, место установки, требуемая температура в бассейне.

В среднем площадь поверхности солнечного коллектора должна быть:

  • Для крытого бассейна или бассейна в доме - 50 - 70 % поверхности воды.
  • Для открытого бассейна - 70 - 100 % поверхности воды.

В уходе солнечные системы подогрева бассейнов очень простые. Требуется только регулярно чистить фильтры и сливать воду на зиму. Причем многие современные модели сами сливают воду на зиму. В зимнее время использовать гелиосистему для нагрева воды в бассейне не представляется возможным, так как в нашем регионе выпадает много снега. В бесснежные периоды вакуумные коллекторы могут работать и зимой, так как антифриз, протекающий в них, выдерживает температуру от -30 °С до +70 °С.

Наибольшей популярностью пользуются прямоугольные модели солнечных коллекторов, но также существуют пирамидальные модели и даже навесы над бассейном. Солнечные коллекторы в виде навеса над бассейном выполняют сразу две функции: подогревают воду и уменьшают испарение воды и теплопередачу между водой и воздухом. Также помимо нагрева с помощью коллектора вода прогревается под действием прямой солнечной радиации, которую накапливает черная поверхность системы.

Вторым по экономичности способом нагрева воды в бассейне можно считать использование теплового насоса. Его работа не зависит от интенсивности солнечного излучения, от длительности светового дня, что позволяет более качественно контролировать нагрев воды.

В основу работы теплового насоса положен цикл Карно. Фактически, он работает как холодильник, только наоборот. Тепловой насос берет тепло из окружающей среды и использует его для подогрева воды в бассейне. Источником тепла может быть грунт, водоем или воздух. Использовать тепловые насосы с грунтовым и водным коллектором только для подогрева бассейна не выгодно. Слишком дорого стоит само оборудование и монтаж коллектора.

Лишь в том случае, когда отопление дома и другие системы жизнеобеспечения организованы с помощью теплового насоса с грунтовым или водным коллектором, тогда его можно использовать и для нагрева воды в бассейне.

В остальных случаях для бассейнов используют тепловые насосы воздушные. Внешне они напоминают наружный блок кондиционера. Вентилятор засасывает воздух окружающей среды, которые передает свое тепло теплоносителю (антифриз), который затем проходит компрессор и испаритель. В испарителе нагретый антифриз отдает свое тепло воде из бассейна, которая поступает туда по трубам. Затем остывший теплоноситель снова нагревается и цикл повторяется.

Важно! Воздушный тепловой насос может работать даже при температуре окружающей среды +5 °С. Обычно его устанавливают в непосредственной близости от уличного бассейна. Если же требуется подогрев воды крытого бассейна в доме, то тепловой насос устанавливают снаружи дома.

Также обратите внимание, если тепловой насос используется для кондиционирования воздуха в помещении, его легко можно использовать и для подогрева воды. Отобранное из помещения тепло направляется для нагрева бассейна, а не просто выбрасывается на улицу.

Тепловой насос для подогрева бассейна намного экономичнее, чем обычный электронагреватель. Он потребляет всего 1 - 1,24 кВт, а выдает тепла на 5,5 - 6 кВт, тем самым экономя до 80% электроэнергии. Данная система является прекрасной альтернативой традиционным источникам энергии, так как она абсолютно экологична, не наносит вред окружающей среде и позволяет экономить.

Не забывайте сохранять тепло в бассейне с помощью пленки с пузырьками. Ведь намного больше тратится энергии и времени на первоначальный нагрев воды в бассейне, и совсем немного на поддержание заданной температуры.

Теплообменник используется довольно часто для подогрева воды в бассейне. Принцип его работы таков: его подключают к источнику тепла, например, котлу отопления или встраивают в систему центрального отопления. Теплоноситель, нагреваясь в котле, направляется в теплообменник, где отдает тепло воде из бассейна, которая через него прокачивается.

Система подогрева воды в бассейне работает так: подключается циркуляционный насос для прокачки воды через теплообменник. Когда температура воды в бассейне опускается ниже требуемой, термостат подает сигнал, и насос включается. Вода прокачивается вдоль змеевика в теплообменнике и нагревается. Сливается обратно в бассейн с другой стороны.

Точно также, когда заданная температура достигнута, насос отключается. Вода из бассейна перестает проходить через теплообменник.

Для большого бассейна используют сразу несколько теплообменников, чтобы ускорить нагрев воды. Размеры и мощность теплообменников бывают разными от 13кВт до 120 кВт. Также они бывают горизонтальными и вертикальными, титановыми и из нержавеющей стали. Так что можно подобрать агрегат для бассейнов различного объема и размеров.

Единственный недостаток такого способа нагрева воды в бассейне - это зависимость от котла отопления. Хотя если правильно спроектировать систему отопления и нагрева горячей воды, то таким теплообменником можно пользоваться и летом, когда отопление не работает. Котел будет включаться только для нагрева теплоносителя, который циркулирует между котлом и теплообменником бассейна.

Проточные электронагреватели оснащены внутри ТЭНом, вода в них нагревается не с помощью теплоносителя, а непосредственно от ТЭНа. Это налагает определенные ограничения на качество воды. Она должна быть достаточно мягкой, без примесей солей, чтобы нагревательный элемент прослужил дольше и не покрывался накипью. Также ТЭН изготавливается из сплавов, устойчивых к коррозии, и покрывается несколькими защитными слоями.

Учитывая то, что расход электроэнергии при таком способе нагрева довольно велик, обычно электронагреватели используют только для нагрева маленьких бассейнов. Например, надувной бассейн, каркасный бассейн, маленькие бассейны-джакузи.

Надувной бассейн с подогревом воды с помощью электронагревателя - роскошь, доступная даже семье со скромным бюджетом.

Электронагреватель для бассейна подключается непосредственно к сети. Его мощность бывает различной, от 3 до 18 кВт. Иногда бытовая электросеть не способна обеспечить работу подобного устройства. И это является существенным недостатком.

Напоследок хотелось бы остановиться на таком способе подогрева воды, как использование топливных котлов. Например, котел может быть газовым, пиролизным, на дровах, на мазуте и другом топливе. Нагрев воды в нем может быть реализован несколькими способами:

  • С помощью теплообменника, когда котел нагревает теплоноситель, а уже теплоноситель нагревает воду в бассейне.
  • Прямоточный нагрев воды непосредственно в котле.
  • Нагрев воды в емкости и затем сброс ее в бассейн.

Обычно такие системы подогрева воды в бассейне используются в тех регионах, где нет магистрального газа, а также других удобных способов нагреть бассейн. Установка любых котлов связана с рядом сложностей: разрешения, проекты, расчеты, дымоходы и обеспечение пожаробезопасности. Все это необходимо решать еще до начала строительства бассейна, а иногда и дома.

При выборе системы подогрева воды в бассейне необходимо учитывать его размеры, объем воды, до какой температуры следует нагревать, требуется ли автоматизация процесса и многое другое. Бюджет - тоже немаловажный аспект. Поэтому будет более правильным, если подбором и установкой нагревательного оборудования будут заниматься специалисты.

Описание:

На фоне возрастающего спроса на энергоресурсы, роста тарифов на них и сокращения запасов традиционных источников энергии особое значение приобретает вопрос об энергосбережении. Использование утилизации тепла сточных вод с целью сокращения затрат на горячее водоснабжение может стать источником серьезной экономии энергоресурсов в современных зданиях.

Утилизация тепла сточных вод.
Читатели спрашивают

На фоне возрастающего спроса на энергоресурсы, роста тарифов на них и сокращения запасов традиционных источников энергии особое значение приобретает вопрос об энергосбережении. Использование утилизации тепла сточных вод с целью сокращения затрат на горячее водоснабжение может стать источником серьезной экономии энергоресурсов в современных зданиях. На вопрос читателя о системах утилизации тепла сточных вод отвечает Нина Анатольевна Шонина , старший преподаватель МАрхИ.

Добрый день, скажите, пожалуйста, существуют ли системы утилизации тепла сточных вод, которые можно использовать в уже существующей системе канализации в здании без существенной реконструкции системы?

Нагрев воды для нужд горячего водоснабжения составляет 20–25% от общего потребления энергии в стандартном доме, и большая часть нагрузки приходится на подогрев воды для принятия ванны или душа. Стоимость горячей воды, как правило, занимает второе место в графе расходов на услуги ЖКХ в многоквартирных жилых зданиях, уступая по стоимости только расходам, затрачиваемым на отопление помещений. Исследования показали, что для гигиенических процедур человеку достаточно 1/10 части используемой в душе воды. Значит около 90% теплой воды, подводимой к смесителю душа, сливается в канализацию неиспользованной.

Кроме теплой воды от душей, свой вклад также вносят стиральные и посудомоечные машины, нагревающие воду с помощью электричества.

Утилизация и повторное использование большей части энергии сточной воды позволит сэкономить тепловую энергию, снизить общую стоимость горячей воды и, за счет снижения выбросов парниковых газов, благоприятно скажется на экологическом состоянии окружающей среды.

Объем канализационных стоков, производимых в огромных количествах большими городами, практически не изменяется в течение года. Температура сточных вод ниже температуры наружного воздуха в летнее время и выше в зимнее. Это делает их идеальным источником низкопотенциального тепла для использования в тепловых насосах. Различные приспособления, позволяющие утилизировать тепло сточных вод, разрабатываются и применяются уже около 30 лет. Самой распространенной системой является применение тепловых насосов, устанавливаемых на очистных станциях. Подобные системы централизованно собирают тепло сточных вод, это позволяет экономить большое количество энергии. В то же время специалисты по энергоэффективности говорят, что значительное количество тепловой энергии сточных вод в буквальном смысле уходят в землю. При транспортировке канализационных вод от зданий до очистных сооружений температура вод значительно снижается из-за того, что коллекторы предназначены для транспортировки вод, а не для сохранения их тепла. В связи с этим специалисты считают целесообразным утилизировать тепло сточных вод не только на очистных станциях, но и непосредственно в самом здании.

Система утилизации тепла сточных вод с тепловым насосом требует значительных капитальных вложений, также необходимо место для установки этого оборудования. Следовательно, назрела необходимость в такой системе утилизации сточных вод, которая обладала бы следующими свойствами:

  • невысокая первоначальная стоимость;
  • быстрая окупаемость;
  • возможность использования в уже существующей системе без кардинальной ее реконструкции;
  • простота использования, не нуждается в службе эксплуатации.

В Канаде была разработана система, удовлетворяющая вышеперечисленным требованиям. Новинка получила название Power-Pipe® DWHRSystem. Она представляет собой медную центральную трубу большого диаметра, которую обматывают медные трубы меньшего диаметра. Данная конструкция устанавливается вместо вертикального участка внутридомовой канализации. По трубе большего диаметра будут транспортироваться сточные воды, по трубам меньшего диаметра – холодная вода от источника водоснабжения к водонагревателю горячей воды. Таким образом будет осуществляться предварительный подогрев воды, идущей на нужды горячего водоснабжения, с помощью тепла сточных вод. Витки трубы меньшего диаметра сконструированы таким образом, чтобы потери давления воды в них были минимальны, это необходимо для того, чтобы мощности уже существующего насоса водоснабжения хватило для транспортировки воды, и не потребовалась бы замена насоса на насос большей мощности. Это привело бы к снижению энергоэффективности системы и дополнительным расходам средств заказчика.

Производительность Power-Pipe была проверена Институтом природных ресурсов Канады, университетом Ватерлоо. Для проверки эффективности система была построена в жилом многоквартирном доме, а также в одном из зданий университета. Исследования показали, что система длиной 60’’, смонтированная на участке стандартной для Канады канализационной трубы, позволяет поднять температуру входящей холодной воды от 10 °C до целых 24 °C, при прочих равных условиях потока. Данная система позволяет снизить затраты на приготовление горячей воды на 20–40% в зависимости от типа здания и его режима водопотребления. Данная система может применяться не только в жилых домах, но и в гостиницах, многофункциональных зданиях, ресторанах, образовательных учреждениях, спортивных сооружениях.

Благодаря низкой начальной стоимости и способности к восстановлению до 40% тепловой энергии, срок окупаемости данной системы обычно составляет от 3 до 4 лет. В ряде стран, где правительство финансово стимулирует владельцев зданий на внедрение энергосберегающих технологий, срок окупаемости может быть значительно уменьшен.

Работа системы основана на физическом принципе, называемом «эффект падающей пленки». Он заключается в том, что падающая вертикально по трубе вода не будет находиться в центре трубы, а будет перемещаться тонкой пленкой по внутренней поверхности трубы, в которую она заключена. Это позволяет максимально собрать тепловую энергию от сточной воды и передать через медную поверхность, известную своим высоким коэффициентом теплопроводности, водопроводной воде.

Данная система может быть установлена одним из трех способов. Первый, рекомендуемый производителем, способ, который обеспечивает максимальную экономию энергию,– это пропуск через систему всего потока водопроводной воды, идущей на нужды и горячего, и холодного водоснабжения. Такой способ получил название «конфигурация с применением равного потока». При необходимости в холодной воде можно сделать отдельную линию холодной воды (не нагретой предварительно на Power-Pipe) и подвести ее к кухонной раковине.

Второй вариант заключается в предварительном нагреве только той части воды, которая идет затем к водонагревателю и используется на нужды горячего водоснабжения. Наконец, третий способ состоит в предварительном подогреве только той воды, которая затем используется в качестве холодной для душа. Любой из этих двух вариантов (известный как «неравный поток») уменьшит эффективность системы примерно на 25%.

Система обладает следующими свойствами:

  • проста в применении и доступна среднестатистическому пользователю;
  • экономит до 40% энергии, затрачиваемой на подогрев горячей воды в среднестатистическом доме;
  • срок окупаемости составляет от 2 до 6 лет;
  • снижает выброс парниковых газов газов почти на 1 т в год на семью из четырех человек;
  • не требует технического обслуживания: пассивная система не имеет движущихся частей;
  • является одним из технических решений, которое позволяет получить зданию, в котором оно применяется, сертификацию LEED.

Данный материал показывает, что не всегда энергоэффективные решения в сфере водоснабжения представляют собой сложные технические устройства. Данная система в настоящее время сертифицирована и применяется в Канаде и США. Будем надеятся, что и на нашем рынке в скором времени начнут появляться простые системы, позволяющие утилизировать тепло сточных вод.

В конце 20-го века, в эпоху глобального централизованного отопления и подачи горячей воды, газовые колонки в домах считались пережитком и вызывали немалое опасение из-за небезопасной конструкции. В настоящее время, устройства для предварительного нагрева бытовой воды - бойлеры, находятся на новом пике популярности.

Автономные индивидуальные бойлеры позволяют не только иметь горячую воду бесперебойно почти при любых обстоятельствах, но и существенно рационализируют расход бюджетных средств. Детские сады, школы, поликлиники и больницы, небольшие частные предприятия успешно обеспечивают себя жизненно необходимой горячей водой, устанавливая мощные бойлеры. Их менее мощных собратьев всё чаще можно увидеть в квартирах многоэтажек и в дачных домиках. А частные коттеджи и таунхаусы поражают разнообразием этих водонагревательных агрегатов.

Виды бойлеров

Все многообразие современных нагревательных водных приборов - бойлеров, можно сгруппировать следующим образом:

  1. По используемому источнику энергии - электрические, газовые, косвенного нагрева, комбинированные.
  2. По материалу внутреннего покрытия камеры нагрева - стеклофарфор, нержавеющая сталь, титановое напыление.
  3. По способу установки - напольные, навесные на кран или стену, врезные.
  4. По принципу работы - проточные и накопительные.

Проточные бойлеры

неограничен временем нагрева и выдаваемыми объёмами горячей воды. Как правило, горячая вода из такого бойлера, не смешивается с холодной из соседнего крана и подаётся напрямую. Температура на выходе зависит от её входного показателя, мощности нагревательного элемента и напора воды. Это может приносить дополнительные неудобства поскольку, чем выше напор в централизованной системе, тем ниже температура.

Бывают однофазными или трёхфазными . Требуют большого количества электроэнергии и качественной проводки. Отличаются водонагревательными элементами: спирали - предпочтительнее для жёсткой воды; ТЭНы - более капризны к качеству воды, но на 15% энергоэкономичнее. Устанавливается на один (максимум два) разбора, собственно на носик у крана, врезается в стояк или навешивается на стену, в непосредственной близости от точки водораздачи.

Идеально подходят для обеспечения бесперебойной мойки посуды в быту и на профильных точках.

Газовые проточные бойлеры или колонки намного экономичнее чем электрические и намного комфортнее в эксплуатации. Основное их преимущество перед накопительными системами это мгновенный нагрев неограниченного количества воды и дальнейшая возможность смешения горячей и холодной перед выпуском в насадку. В отличие от электрических, один газовый бойлер осуществляет бесперебойный подогрев воды на все водораздачи. Эти водогреи не зависят от наличия э/э., в случае если они оснащены поджигом от батареек. Современные модели для небольших домовладений не нуждаются в дополнительном дымоходе.

Накопительные бойлеры

Отсутствие специфических требований к электропроводке и дипломатичные цены обеспечили накопительным бойлерам самую высокую популярность. При многочисленных вариантах названия таких агрегатов и в независимости от используемого источника энергии: накопительный, буферный, косвенного нагрева, газовый, электрический, комбинированный; их суть остаётся неизменной - вода вначале подогревается до выставленной температуры в резервуаре, а потом используется по мере необходимости.

Поэтому прежде чем отправится за покупкой такого бойлера, необходимо определиться с его кубатурой, которая зависит от количества членов семьи и точек водоразбора. Необходимый объём бойлера , из предложенных, в ассортименте от 15 до 1500 литров, можно рассчитать несколькими способами:

По формуле N х (Т - Т1) : (Т2 - Т1)

  • N = приблизительно от 4 до 10. Эта цифра характеризует ожидаемый расход горячей воды в литрах за одну минуту и зависит от силы её постоянного напора в центральной системе, разновидностей кранов, насадок и одновременного их использования.
  • Т = желаемая температура горячей воды на выходе.
  • Т1 = температура в кранах с холодной водой.
  • Т2 = заявленная температура горячей воды в техническом паспорте бойлере.

По уже готовым (приблизительным) расчётам:

  • 20−50 л - для одного человека или небольшого дачного домика;
  • 50−100 л - для семьи из 3 человек;
  • 100−150 л - для семьи от 4 человек;
  • от 200 л и более - для частных домов (требует установки в отдельном помещении).

При выборе накопительного бойлера надо обращать внимание:

Электрические накопительные бойлеры дешевле чем газовые, но более дорогие в эксплуатации. Современные электрические бойлеры снабжают магниевым анодом, что дополнительно гарантирует защиту внутреннего слоя бака от коррозии, зато газовые будут снабжать горячей водой даже при отсутствии электричества. При выборе электрической модификации выбирайте мощный нагревательный элемент (оптимально 2 к. Вт) с оптимальной длиной и большой площадью охлаждения «сухого» ТЭНа, ведь от этого напрямую зависит время нагрева всего объёма воды, иначе существует возможность перерасхода э/э до восьми лишних часов работы в сутки.

В многоквартирных домах предпочтение отдаётся электрическим моделям, поэтому необходима консультация специалиста из Управляющей компании, по соответствию допустимой мощности уже существующих сетей. В случае перепланировки и капитального ремонта может потребоваться утверждение в энергонадзоре и энергосбыте, а в некоторых случаях необходимо согласование с компанией-застройщиком.

Комбинированные бойлеры и устройства косвенного нагрева

Среди владельцев больших частных домовладений, всё большей популярностью стали пользоваться бойлеры нового поколения . При всевозрастающей цене на энергоносители отапливать помещения больших площадей газом становится всё более нецелесообразным и владельцы такого жилья переходят на более современные способы обогрева при помощи многоконтурных котлов нового поколения работающих на деревянных, торфяных паллетах, бытовом мусоре, растительном сырье.

Именно такое выработанное тепло, используется в бойлерах косвенного подогрева санитарной воды. Они не имеют в своей конструкции собственного нагревательного элемента или источника. В змеевик установленный в резервуаре подаётся теплоноситель из основного контура (иногда из нескольких) и вследствие теплообмена вода становится горячей.

Для того чтобы работа косвенных водогреев стала возможной и в неотопительный сезон, в них встраивают электрические ТЭН ы или газовые горелки. Таким образом, комбинированный бойлер обеспечивает бесперебойную выработку горячей воды используя как твёрдые виды топлива, так и газ и электроэнергию.

Всегда горячей воды и мира вашему дому!

Общая характеристика

Как правило, вода, подаваемая в котел из деаэратора, имеет температуру 105 °C. Вода, находящаяся внутри котла, имеет более высокие давление и температуру. Поступающая в котел вода состоит из возвратного конденсата, а также подпиточной воды для восполнения потерь. Возможна утилизация тепла посредством предварительного подогрева питательной воды, что позволяет снизить затраты топлива.

Предварительный подогрев может быть организован четырьмя способами:

  • с использованием отходящего тепла (например, от какого-либо технологического процесса): питательная вода может подогреваться за счет имеющегося потока отходящего тепла, например, с использованием водо-водяного теплообменника;
  • с использованием экономайзера: экономайзер ((1) на рис.) представляет собой теплообменник, позволяющий снизить расход топлива за счет передачи тепла дымовых газов питательной воде, поступающей в котел;
  • с использованием деаэрированной питательной воды: в дополнение к перечисленным методам, возможен предварительный подогрев конденсата, поступающего в деаэратор((2) на рис.), за счет тепла деаэрированной воды. Питательная вода, поступающая из резервуара для сбора конденсата ((3) на рис.), имеет меньшую температуру, чем вода, уже прошедшая деаэрацию. С помощью теплообменника можно организовать передачу части тепла от деаэрированной питательной воды конденсату, поступающему в деаэратор. Как следствие, температура деаэрированной питательной воды, поступающей в экономайзер ((1) на рис.), оказывается ниже. Это способствует более эффективному использованию тепла дымовых газов и снижению их температуры, поскольку теплопередача происходит при большей разнице температур. Одновременно это позволяет снизить расход пара на деаэрацию, поскольку температура поступающего в деаэратор конденсата оказывается выше;

Рис. Предварительный подогрев питательной воды

  • посредством установки теплообменника на входе в деаэратор с целью предварительного подогрева поступающей питательной воды за счет конденсации пара, используемого для деаэрации.

Перечисленные меры могут способствовать общему повышению энергоэффективности (КПД), т.е., снижению расхода топлива на получение определенного количества пара.

Экологические преимущества

Объемы энергосбережения, которые могут быть достигнуты за счет этих мер, зависят от температуры дымовых газов (или технологического процесса, тепло которого используется для подогрева), выбора теплообменных поверхностей и, в значительной степени, от давления пара.

Согласно широко распространенному представлению, использование экономайзера способно повысить КПД производства пара на 4 %. Для обеспечения непрерывной работы экономайзера следует регулировать подачу воды.

Воздействие на различные компоненты окружающей среды

К возможным недостаткам указанных четырех методов относится то, что их реализация требует дополнительного пространства для установки оборудования, а возможности для их использования сокращаются по мере увеличения сложности технологических процессов.

Производственная информация

Согласно данным производителей, широко применяются экономайзеры с номинальной мощностью 0,5 МВт. Экономайзеры с ребристыми трубами могут иметь номинальную мощность до 2 МВт и более. В случае номинальной мощности более 2 МВт, около 80 % поставляемых водотрубных котлов оборудованы экономайзерами, поскольку из применение окупается даже при односменной работе (при загрузке системы 60 - 70%).

Как правило, температура дымовых газов превышает температуру насыщенного пара примерно на 70 ºC. Для типичных промышленных паровых котлов температура дымовых газов составляет 180 °C. Нижний предел температуры этих газов определяется соответствующей кислотной точкой росы, которая зависит от используемого топлива и, в частности, от содержания в нем серы. Эта величина составляет примерно 160 °C для тяжелого мазута, 130 °C для легкого мазута, 100 °C для природного газа и 110 ºC для твердых отходов. В котлах, использующих в качестве теплоносителя термомасла, имеет место более интенсивная коррозия, и конструкция экономайзера должна предусматривать возможность замены соответствующих деталей. Коррозия деталей экономайзера усиливается, если температура дымовых газов падает существенно ниже кислотной точки росы, что может иметь место в случае значительного содержания серы в топливе.

Если температура газов в дымовой трубе оказывается ниже кислотной точки росы, в отсутствие специальных мер это приводит к образованию отложений сажи в трубе. Как следствие, экономайзеры часто оборудуют обводным газоходом, позволяющим пустить часть дымовых газов в обход экономайзера в случае недопустимого снижения температуры газов в трубе.

Как правило, каждые 20-40 ºC снижения температуры дымовых газов соответствуют повышению КПД системы примерно на 1%. Это означает, что, в зависимости от температуры газа и перепада температур на входе и выходе теплообменника, можно достичь повышения КПД на величину до 6-7%. Как правило, температура питательной воды, прошедшей через экономайзер, увеличивается со 103 до примерно 140 °C.

Применимость

На некоторых существующих предприятиях организация предварительного подогрева питательной воды сопряжена со значительными трудностями. Системы предварительного подогрева конденсата за счет тепла деаэрированной воды на практике применяются редко.

На предприятиях с высокой мощностью парогенерирующих систем подогрев питательной воды при помощи экономайзера является стандартной практикой. Однако и в этой ситуации возможно добиться повышения КПД на величину до 1% посредством увеличения разницы температур. Использование отходящего тепла других технологических процессов также является реалистичным вариантом для большинства предприятий. Потенциал для эффективного применения этого метода существует и на предприятиях с относительно невысокой мощностью парогенерирующих систем.

Экономические аспекты

Потенциал энергосбережения в результате организации предварительного подогрева питательной воды с помощью экономайзера зависит от ряда факторов, включая потребности конкретного производства, состояние дымовой трубы и характеристики дымовых газов. Окупаемость соответствующих инвестиций в условиях конкретной паровой системы зависит также от времени работы системы, фактических цен на топливо и географического положения предприятия.

На практике потенциал энергосбережения в результате предварительного подогрева питательной воды достигает нескольких процентов от общей энергии производимого пара. Поэтому даже для небольших котлов возможно достичь энергосбережения в объеме нескольких гигаватт-часов в год. Например, для котла мощностью 15 МВт можно достичь экономии в объеме примерно 5ГВт·ч/г, экономического эффекта в размере около 60 тыс. евро в год и сокращения выбросов CO 2 примерно на 1 тыс. т/год. Поскольку результаты пропорциональны масштабам установки, крупные предприятия могут добиться большего эффекта.

Во многих случаях температура дымовых газов, поступающих их котла в трубу, превышает температуру производимого пара на 100-150 ºC. Как правило, снижение температуры дымовых газов на каждые 20-40 ºC позволяет повысить КПД котла на 1%. За счет утилизации отходящего тепла экономайзер во многих случаях может обеспечить сокращение расхода топлива на 5-10% и обеспечить собственную окупаемость менее чем за два года. Потенциал энергосбережения за счет снижения температуры дымовых газов продемонстрирован в табл.

В предположении использования природного газа в качестве топлива, 15% избытка воздуха и конечной температуры дымовых газов 120 °C

По материалам "Справочного документа по наилучшим доступным технологиям обеспечения энергоэффективности"


Для того чтобы добавить описание энергосберегающей технологии в Каталог, заполните опросник и вышлите его на c пометкой «в Каталог» .